Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Magneto-optical properties of charged excitons in quantum dots

Identifieur interne : 000706 ( Russie/Analysis ); précédent : 000705; suivant : 000707

Magneto-optical properties of charged excitons in quantum dots

Auteurs : RBID : Pascal:02-0600199

Descripteurs français

English descriptors

Abstract

We present results on the influence of a magnetic field on excitons in semiconductor quantum dots, concentrating on the diamagnetic curvature. We use samples with a bimodal ensemble photoluminescence (PL) and we find that for the low-energy PL branch, the diamagnetic curvature is independent of charge, yet for the high-energy branch, the diamagnetic curvature is strongly reduced with excess charge. Guided by model calculations, we interpret the two classes as typical of the strong and intermediate confinement regimes. In the light of this, we predict that in the weak confinement regime the excitonic diamagnetic shift is strongly dependent on surplus charge, corresponding to a reversal in sign of the conventional diamagnetic shift for neutral excitons.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0600199

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Magneto-optical properties of charged excitons in quantum dots</title>
<author>
<name sortKey="Schulhauser, C" uniqKey="Schulhauser C">C. Schulhauser</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Center for NanoScience and Sektion Physik, Ludwig-Maximilians-Universitat, Geschwister-Scholl-Platz 1, D-80539 Munchen, Germany</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Center for NanoScience and Sektion Physik, Ludwig-Maximilians-Universitat, Geschwister-Scholl-Platz 1, D-80539 Munchen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Haft, D" uniqKey="Haft D">D. Haft</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Center for NanoScience and Sektion Physik, Ludwig-Maximilians-Universitat, Geschwister-Scholl-Platz 1, D-80539 Munchen, Germany</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Center for NanoScience and Sektion Physik, Ludwig-Maximilians-Universitat, Geschwister-Scholl-Platz 1, D-80539 Munchen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Warburton, R J" uniqKey="Warburton R">R. J. Warburton</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom</s1>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS</wicri:regionArea>
<wicri:noRegion>Edinburgh EH14 4AS</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Karrai, K" uniqKey="Karrai K">K. Karrai</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Center for NanoScience and Sektion Physik, Ludwig-Maximilians-Universitat, Geschwister-Scholl-Platz 1, D-80539 Munchen, Germany</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Center for NanoScience and Sektion Physik, Ludwig-Maximilians-Universitat, Geschwister-Scholl-Platz 1, D-80539 Munchen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Govorov, A O" uniqKey="Govorov A">A. O. Govorov</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Center for NanoScience and Sektion Physik, Ludwig-Maximilians-Universitat, Geschwister-Scholl-Platz 1, D-80539 Munchen, Germany</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Center for NanoScience and Sektion Physik, Ludwig-Maximilians-Universitat, Geschwister-Scholl-Platz 1, D-80539 Munchen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Department of Physics and Astronomy and CMSS Program, Ohio University, Athens, Ohio 45701</s1>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>Department of Physics and Astronomy and CMSS Program, Ohio University, Athens</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute of Semiconductor Physics, RAS, Siberian Branch, 630090 Novosibirsk, Russia</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Semiconductor Physics, RAS, Siberian Branch, 630090 Novosibirsk</wicri:regionArea>
<wicri:noRegion>630090 Novosibirsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kalameitsev, A V" uniqKey="Kalameitsev A">A. V. Kalameitsev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute of Semiconductor Physics, RAS, Siberian Branch, 630090 Novosibirsk, Russia</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Semiconductor Physics, RAS, Siberian Branch, 630090 Novosibirsk</wicri:regionArea>
<wicri:noRegion>630090 Novosibirsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chaplik, A" uniqKey="Chaplik A">A. Chaplik</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute of Semiconductor Physics, RAS, Siberian Branch, 630090 Novosibirsk, Russia</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Semiconductor Physics, RAS, Siberian Branch, 630090 Novosibirsk</wicri:regionArea>
<wicri:noRegion>630090 Novosibirsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schoenfeld, W" uniqKey="Schoenfeld W">W. Schoenfeld</name>
<affiliation wicri:level="2">
<inist:fA14 i1="05">
<s1>Materials Department, University of California, Santa Barbara, California 93106</s1>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Materials Department, University of California, Santa Barbara</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Garcia, J M" uniqKey="Garcia J">J. M. Garcia</name>
<affiliation wicri:level="2">
<inist:fA14 i1="06">
<s1>Instituto de Microelectronica de Madrid, CNM-CSIC Isaac Newton, 8, PTM, 28760 Madrid, Spain</s1>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Microelectronica de Madrid, CNM-CSIC Isaac Newton, 8, PTM, 28760 Madrid</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Petroff, P M" uniqKey="Petroff P">P. M. Petroff</name>
<affiliation wicri:level="2">
<inist:fA14 i1="05">
<s1>Materials Department, University of California, Santa Barbara, California 93106</s1>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Materials Department, University of California, Santa Barbara</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">02-0600199</idno>
<date when="2002-11-15">2002-11-15</date>
<idno type="stanalyst">PASCAL 02-0600199 AIP</idno>
<idno type="RBID">Pascal:02-0600199</idno>
<idno type="wicri:Area/Main/Corpus">00E243</idno>
<idno type="wicri:Area/Main/Repository">00DC81</idno>
<idno type="wicri:Area/Russie/Extraction">000706</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1098-0121</idno>
<title level="j" type="abbreviated">Phys. rev., B, Condens. matter mater. phys.</title>
<title level="j" type="main">Physical review. B, Condensed matter and materials physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Excitons</term>
<term>Experimental study</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Magneto-optical effects</term>
<term>Photoluminescence</term>
<term>Semiconductor quantum dots</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7867H</term>
<term>7340R</term>
<term>7866F</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Semiconducteur III-V</term>
<term>Point quantique semiconducteur</term>
<term>Exciton</term>
<term>Effet magnétooptique</term>
<term>Photoluminescence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present results on the influence of a magnetic field on excitons in semiconductor quantum dots, concentrating on the diamagnetic curvature. We use samples with a bimodal ensemble photoluminescence (PL) and we find that for the low-energy PL branch, the diamagnetic curvature is independent of charge, yet for the high-energy branch, the diamagnetic curvature is strongly reduced with excess charge. Guided by model calculations, we interpret the two classes as typical of the strong and intermediate confinement regimes. In the light of this, we predict that in the weak confinement regime the excitonic diamagnetic shift is strongly dependent on surplus charge, corresponding to a reversal in sign of the conventional diamagnetic shift for neutral excitons.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1098-0121</s0>
</fA01>
<fA02 i1="01">
<s0>PRBMDO</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. rev., B, Condens. matter mater. phys.</s0>
</fA03>
<fA05>
<s2>66</s2>
</fA05>
<fA06>
<s2>19</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Magneto-optical properties of charged excitons in quantum dots</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SCHULHAUSER (C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HAFT (D.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WARBURTON (R. J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KARRAI (K.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GOVOROV (A. O.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>KALAMEITSEV (A. V.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>CHAPLIK (A.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>SCHOENFELD (W.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>GARCIA (J. M.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>PETROFF (P. M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Center for NanoScience and Sektion Physik, Ludwig-Maximilians-Universitat, Geschwister-Scholl-Platz 1, D-80539 Munchen, Germany</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom</s1>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics and Astronomy and CMSS Program, Ohio University, Athens, Ohio 45701</s1>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institute of Semiconductor Physics, RAS, Siberian Branch, 630090 Novosibirsk, Russia</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Materials Department, University of California, Santa Barbara, California 93106</s1>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Instituto de Microelectronica de Madrid, CNM-CSIC Isaac Newton, 8, PTM, 28760 Madrid, Spain</s1>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s2>193303-193303-4</s2>
</fA20>
<fA21>
<s1>2002-11-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>144 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2002 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>02-0600199</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CC</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physical review. B, Condensed matter and materials physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We present results on the influence of a magnetic field on excitons in semiconductor quantum dots, concentrating on the diamagnetic curvature. We use samples with a bimodal ensemble photoluminescence (PL) and we find that for the low-energy PL branch, the diamagnetic curvature is independent of charge, yet for the high-energy branch, the diamagnetic curvature is strongly reduced with excess charge. Guided by model calculations, we interpret the two classes as typical of the strong and intermediate confinement regimes. In the light of this, we predict that in the weak confinement regime the excitonic diamagnetic shift is strongly dependent on surplus charge, corresponding to a reversal in sign of the conventional diamagnetic shift for neutral excitons.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C40R</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7867H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7340R</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Point quantique semiconducteur</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Semiconductor quantum dots</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Exciton</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Excitons</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Effet magnétooptique</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Magneto-optical effects</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Photoluminescence</s0>
</fC03>
<fN21>
<s1>351</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0250M000836</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000706 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000706 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:02-0600199
   |texte=   Magneto-optical properties of charged excitons in quantum dots
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024